数えてみよう
タイトルに困ったが、まあ、適当で良いか。こんな簡単なことでも、一応は数学のカテゴリーに入れてOK?
ということで、本題。至極簡単な話。N以上M以下の整数の個数は何個でしょうか。あ、もちろんM≧Nです。例えば、20、21、22、・・・100まで、何個あるか。答えは 100-20+1=81個ですね。
一般の場合は、M-N+1 個となる。証明も難しくないが、分かりやすいのが欲しいところ。ずっと以前、多分中学生か高校生の頃に証明を考えた記憶がある。数直線上で、N, N+1, ・・・, M-1, M のところに木を植える。NからMまでの距離は M-N だから、区間の個数は M-N 個。よって、所謂「植木算」によって、木の本数は1本多くなり、M-N+1 個である。
簡単で悪くないと思っているのだが、個数の問題なのに、距離を持ち出している点が気になっていた。つまり、理論の純粋性(?)が損なわれている気がするのだ(笑)。
朝、シャワーを浴びながらぼんやり考えていて、ふと思いついた。N から M までの整数の個数と、N-x から M-x までの整数の個数は どんな整数 x に対しても同じだ。これは当たり前。そこで、x=N-1 とおく。すると、1 から M-(N-1) までとなる。この個数は当然、M-(N-1)=M-N+1 になる。
うーん、今こうして再現してみると、思ったほどシンプルじゃないかなあ。